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Signal, Image, Video

« Asignal

— a pattern of variations of a physical quantity that can be
manipulated, stored, or transmitted by physical process.

— an information carrying variable
— one dimentional funtion f(t)
* Animage
— two-dimensional function f(x,y), where x and y are the
spatial coordinates,

— the amplitude of f at any pair of coordinates (X,y) Is called
the intensity of the image at that level.

e« Avideo

— three-dimensional function f(x,y,t), where x and y are the
spatial coordinates, and t is the time.



The principal sources

 The principal source for the signal Is any measurable
guantity
— Electrical, physical, chemical, biological, etc.

 The principal source for the images Is the
electromagnetic (EM) energy spectrum.
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The principal sources

 Ultrasound Imaging Medal and Docrct

Low bass notes Animals and Chemistry Diagnostic and NDE

— Ultrasonic spectrum oz 20k J e | ooz

Infrasound  Acoustic
— Sound (Acoustic)

 Mechanical radiant energy that Is transmitted by longitudinal
pressure waves in a material medium and is the objective
cause of hearing

Lowes Highes

— Ultrasound Turtle % . 1000

. - . Goldfish 100 - 2.000

* Vibrations of the same physical Frog 100 - 3.000

. . Pigeon 200 - 10.000

nature as sound but with frequencies sparrow 250 - 12.000

- Human 20 - 20.000

above the range of human hearing  cninpanzee 100 - 20000

Rabbit 300 - 45.000

— Infrasound Dog 0 - 4o
- . . at - :

 Vibrations of the same physical Gulnea Pig s - 50000

nature as sound but with frequencies Mowe 1000 - 100.000

. Bat 3.000 - 120.000
below the range of human hearing  potohin 1000 - 130.000



Signal Processing

* Involves the analysis of information captured through
Instruments that measure a 1D variable to provide useful
Information upon which a decision can be made.

— Engineers are discovering new ways to process these signals using
a variety of mathematical formulae and algorithms.

A typical signal processing system

Physiol.
Ve Anzlog

N ——— L Signal — agreat deal of

External Detector

Energy Frocessing activities takes place
around the signal

Analog_to Slgnal : prOCeSSIHQ bIOCk in thls
»  Diglal [~ Slomecor **’ Signal :'—lv Display > SyStem
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Computer

— However, advances in peripheral systems such as sensor and
display technologles are also important for overall system
Improvement



Image Procesing Levels

 low-level processes
Input: Image, Output: Image
« Examples: Noise removal, image sharpening
* mid-level processes
Input: Image, Output: Attributes
« Examples: Object recognition, segmentation
* high-level processes

Input: Attributes, Output: Understanding
« Examples: Scene understanding, autonomous navigation



Biomedical signal processing

* Involves the analysis of information captured through
physiological instruments that measure
— heart rate, blood pressure, oxygen saturation levels, blood
glucose, nerve conduction, brain activity, etc.
to provide useful information upon which clinicians can
make decisions.

« By using more sophisticated means to analyze what our
bodies are saying, we can potentially determine the
state of a patient's health through more noninvasive
measures.



Biomedical signal processing

« Blomedical Signal Processing combines many
science and engineering disciplines such as
— mathematics
— physics
— electrical engineering
— computer engineering

« An advance In these fields also contributes to
the advances in biomedical signal processing.



Biomedical Signal Processing (past)

* |n the past, processing
meant mainly

of biomedical signals

— filtering of signals for removing noise and power

lines Interference,

— spectral analysis to unc
characteristics of signa

— modeling for feature re
parameterization.

erstand the frequency
S,

presentation and



Biomedical Signal Processing

 Physicians can make decisions by examining a

pat

lent.

« However, acquisition and processing of

o][o)

medical signals has become more and more

Important to the physician.

* The main reasons for this development

— the growing complexity of the biomedical
examinations,

— 1
C

ne Increasing necessity of comprehensive
ocumentation,

— 1

ne need for automation in order to reduce costs.
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Biomedical Signal Processing (current)

« Recent trends have been toward guantitative or
objective analysis of physiological systems via signal
analysis and Al.

— Analysis of signals accomplished by humans has many
limitations

« Computer analysis of these signals could provide
objective strength to diagnoses.

 Different technigues can be used to analyze a
biomedical signal

— filtering, adaptive noise cancellation, time-frequency
analysis, pattern recognition, machine learning, etc.
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Recent Technological Advances

» Recent Technological Advances
— Sensor advances in medicine and biology
— Nanotechnology
— Advanced implants
— Solar and light powered devices
— MEMS
— Wireless technologies
— Al
enables us to acquire more complex data

 Results in huge amount of data to be processed
— Data science
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Examples-1

» Advances In microarray technologies results In
vast amount of data to be processed.

 Two approaches :

— Computational

 Using new computing systems, such as

— Reconfigurable computing system / FPGA
— GPU

— Algorithmic

« Applying well known signal processing techniques to a
new data type

« Applying Al and Data Science concepts

13



« H. Hussain, K. Benkrid, A. Ebrahim, A.T. Erdogan, and H.
Seker, "Novel Dynamic Partial Reconfiguration
Implementation of K-means Clustering on FPGAs:
Comparative Results with GPPs and GPUs", Volume 2012,
International Journal of Reconfigurable Computing, 2012.

 Faella, John, "On Performance of GPU and DSP Architectures
for Computationally Intensive Applications"” (2013). Open
Access Master's Theses. Paper 2.
http://digitalcommons.uri.edu/theses/2

« Chrysostomou, C., Seker, H., Aydin, N., Haris, P.I., "Complex
Resonant Recognition Model in analysing Influenza a virus
subtype protein sequences,” Information Technology and
Applications in Biomedicine (ITAB), 2010 10th IEEE
International Conference on, vol., no., pp.1-4, 3-5 Nov. 2010.

14


http://digitalcommons.uri.edu/theses/2

Pashaei E, Aydin N, “Markovian encoding models in human splice site
recognition using SVM”, Computational Biology and Chemistry, Vol. 73, 159-
170, 2018

— https://doi.org/10.1016/j.compbiolchem.2018.02.005
Pashaei E, Pashaei E, Ahmady M, Ozen M, Aydin N, “Meta-analysis of
MIRNA expressmn proflles for prostate cancer recurrence following radical
prostatectomy”’, PloS one, Vol. 12(6), 1-23, 2017

— https://doi.org/10.1371/journal.pone.0179543
Pashaei E, Aydin N, “Binary black hole algorithm for feature selection and
classification on biological data”, Applied Soft Computing, Vol. 56, 94-106,
2017

— https://doi.org/10.1016/j.as0c.2017.03.002
Pashael E, Guzel E, Ozgurses ME, Demirel G, Aydin N, Ozen M, “A Meta-
Analysis: ldentification of Common Mir-145 Target Genes that have Similar
Behavior in Different GEO Datasets”, PloS one, VVol. 11(9), 1-14, 2016.

— https://doi.org/10.1371/journal.pone.0161491

Kurt Z, Aydin N, Altay G, “A comprehensive comparison of association
estimators for gene network inference algorithms™, Bioinformatics, Vol.

30(15), 2142-2149, 2014
— https://doi.org/10.1093/bioinformatics/btul82

15


https://doi.org/10.1016/j.compbiolchem.2018.02.005
https://doi.org/10.1371/journal.pone.0179543
https://doi.org/10.1016/j.asoc.2017.03.002
https://doi.org/10.1371/journal.pone.0161491
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Examples - 2

« Mobile/miniaturized biomedical systems

— IMposes some constraint on:
« Power consumption
 Data rate
 Size/area
 Sensor technology

— requires to employ
 Low power architectures
« Power aware algorithms
* New power sources
» High level of integration (System on Chip)

16



Example: Integrated Diagnostics Environmental and Analytical Systems

The concept

Lab-in-a-pill

(artist's impression)

Ingestible electronic
capsule integrates several
sensors, amplifiers, ADC,
and includes microsystem
scheduling, coding and
transmitting circuitry. The
system is able to monitor
some common

physiological parameters of
Gastro-intestinal tract such

as temperature, pH,
conductivity, and oxygen
concentration
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Design specifications of IDEAS

Miniature size

Low power l’ Wireless
consumptlon commumcatlons
Chemically
archltecture

System on-chip
Real- tlme integration
data processing Low cost
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IDEAS SoC
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Protoypes

The 1st prototype

Dimensions: Weight: B
32 mm (L) 11.5 mm (D) 3.8 g (without PDMS filling)

6.4 g (with PDMS filling)
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Some Results (Simulation and Real)

1000 test data recorded from a pH sensor, which was a component of the
integrated sensor microsystem, was used.
*The data were digitized by an 8 bit A/D converter modeled in Matlab and
converted into a bit stream, then coded and transmitted.
Ps: The pH scale 1s a notation that extends from 0 to 14 with 7 as its middle
point. It is a scale that measures hydrogen ion concentration
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Some Results (Simulation and Real)
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Test data from an
intravascular pressure
sensor was encoded and
transmitted by using the
DS-SS TX (PN length
128). The transmitted
signal was re-digitized in
MATLAB using 8 bit
resolution. Then it was
decoded using the DS-
SS receiver.

Shows the reconstructed
or received data at the
receiver,

The difference between
original signal and
reconstructed signal. It is
possible to see the effect
of digitization and integer
operations
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Real time test results of TX unit in IDEAS2 SoC
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Real time test results of TX unit in IDEAS2 SoC
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Experimental result

An experimentally

obtained trace of ‘O’s and

‘1's with value (after

normalized correlation) —

1 and 1 respectively.
Please note that this
output was recorded
while IDEAS2 chip
operating, not only DS-
SS encoder. This slide
demonstrates that the
chip in general, and DS-
SS transmitter in
particular functions as
Intended.
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Examples - 3

e Asymptomatic Emboli Detection

— Stroke Is an 1llness causing partial or total
paralysis, or death.

— Sudden brain damage

— Lack of blood flow to the brain
caused by a clot or rupture of a
blood vessel

e The most common type of stroke
(80% of all strokes) occurs when
a blood vessel in or around the
brain becomes plugged.

26



Emboli

e The "travelling clots" are called emboli.
e Solid emboli typically consist of

— thrombus,

— hard calcified plaque or

— soft fatty atheroma.

« (Gaseous emboli may also enter the circulation during
surgery or form internally from gases that are
normally dissolved in the blood.

 Any foreign body (solid or gas) that becomes free-
floating In the bloodstream is called an embolus,

— from the Greek ‘embolos’ meaning ‘a stopper’.

27



« Early and accurate detection of
asymptomatic emboli Is important in
identifying patients at high risk of stroke

* They can be detected by Doppler
ultrasound

— Transcranial Doppler ultrasound (TCD)
¢ 1-2 MHz

28



Doppler ultrasound

» A Doppler ultrasound Is a noninvasive test that can be
used to estimate the blood flow through your blood
vessels by bouncing high-frequency sound waves
(ultrasound) off circulating red blood cells.

A regular ultrasound uses sound waves to produce
Images, but can't show blood flow.

* A Doppler ultrasound may help diagnose many
conditions, including:
— Blood clots
— A blocked artery (arterial occlusion)

29



Doppler ultrasound

_ 2vf,cos @
C

v f.C
2f cosé

0

v (velocity)

f, 1s transmitted frequency
f. 1s received frequency

v 1S the velocity of the
target,

@ 1s the angle between the
ultrasound beam and the
direction of the target's
motion, and

c Is the velocity of sound In
the medium
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A general Doppler ultrasound signal measurement system

acoustical

energy

T ransmission
&

Reception

electrical
energy

Electrical
Processing

audio-visual display
store
print etc.

Display &
Further
processing
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Typical Doppler System for Detecting Emboli

sin
Gated Master > Sample Band-pass
— < cos Demodulator— >
transmiter 0SC. ( —» . & hold filter Further
7'y 7'y processing
Logic
unit
A 4
Receiver RF > Sample Band-pass
> Demodulator— >
g amplifier filter > & hold filter
Transducer\ .
Demodulation
—
° ®

Quadrature to directional signal conversion
Time-frequency/scale analysis

Data visualization

Detection and estimation

Derivation of diagnostic information



Examples of Embolic Signals
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More examples
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TF and TS analysis

)=S0 (e -he e e - [ syw (22 Jar

 TF tiling Is linear « TS tiling is logarithmic

 Decomposes a time series  Decomposes a time series
Into TF space Into TS space

« Trade-off between frequency <« TF resolution compromise
and time resolution IS optimised

« Assumes the signal is  I|deal for the analysis of
stationary within the analysis sudden short duration
window signal changes

« Fast algorithms exist * Fast algorithms exist
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Example: analysis of Embolic Doppler signal
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Detection of Embolic Signals Using DWT and Fuzzy Logic

Quadrature
to
directional
conversion

Forward
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\

Detection
and

Classifi-
cation
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Some Parameters Used in Detection

A sketch of an

ower .
P Instantaneous
power.
A
Aul AT\ VAW AW WA
ton to  Lor time

Ay, : threshold value

P2TR: peak value to threshold ratio

TP2TR: total peak value to threshold ratio

RR : rise rate

FR : fall rate

F2RM : peak forward power to reverse power ratio
TF2R : total forward power to reverse power ratio

Ath = an‘\/ Iogz N +O_rn'\/ Iogz N

Auc
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h
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Some Parameters Used In Detection

These parameters are based on

1 ¢+ 9
the narrow-band assumption ~ * ‘E_wat‘s(t)‘ i

1 p+o 2
f, =E—j_w fS(F)[ df

S

t
f

. averaged time centre of the signal
. averaged frequency centre of the 721 fw(t—ts)z\s(t)\zdt

S

S

signal ° .

T.%: time spreading

B.: frequency spreading

a(t) : instantaneous amplitude E. - jm\s(t)\zdt < 400

f(t) . instantaneous frequency N

s,(t) : complex quadrature signal given as a0 =[s. 1)
s.()=s(t)+H{s(t)} f =19

Where H{s(t)} is Hilbert transform of s(t)

$

1
E
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Fuzzy Membership Function and Detection Rules

Trapezoidal membership Membership value (MV):
function used for the
derivation of membership fx(n) <th,; MV= Oorl
values fx(n) >th, & <th,:
;X
MV = 1= thy—th, 3

If x(n) >th, & <th,;
MV = 0Oorl
1 If x(n) >thy; & <th,;
th, th, th, th, x(n)

MV = 22 ~ x(n)-th3

Ifx(n) >th,; MV= 0Oor1l

=l—Zl

:1—22
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MEMBERSHIP RULES FOR THE PARAMETERS

x(n) < thy > thy & < ths > tho & < ths > thy & < thy > thy
ar  em  sp ar em sp ar  em  sp ar em sp ar  em  sp
P2TR 0 0 1 0 Z1 11—z 0 1 0 29 1— 29 0 1 0 0
TP2TR 0 0 1 0 Z1 1-— Z1 0 1 0 zZ2 1-— zZ92 0 1 0 0
F2RM 1 0 0 1— Z1 0 Z1 0 0 1 0 zZ2 1— z9 0 1 0
TF2R 1 0 0 1—2z 0 21 0 0 1 0 29 1 — 29 0 1 0
RR 1 0 0 1—2z Z1 0 0 1 0 0 1— 29 Z9 0 0 1
FR 1 0 0 1— 2z 21 0 0 1 0 0 1— 29 Z2 0 0 1
ts 0 0 1 0 — 21 z1 0 1 0 z2 1— 29 0 1 0 0
fs 0 0 1 0 Z1 1—2z 0 1 0 Z9 1— 29 0 1 0 0
T82 0 0 | 0 — 21 Z1 0 1 0 Z9 1— 29 0 | 0 0
Bg 1 0 0 l1—2z z1 0 0 1 0 0 1— 29 z9 0 0 1
VIFE 0 0 | Z1 0 1—2z 1 0 0 1— 2o Z9 0 0 1 0
VIF 1 0 0 1— 2z Z1 0 0 1 0 0 1— 29 z9 0 0 1

ar: artifact, em: emboli, sp: speckle; z1 = (tha — th1)~ ' (x(n) — thi1), z2 = (tha — th3) "' (x(n) — ths)
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THRESHOLD VALUES OF THE PARAMETERS USED IN THE DETECTION

th1 tho tha tha
P2TR (dB) 6 12 14 20
TP2TR (dB) 17 23 26 38
F2RM (dB) 10 20 22 26
TF2R (dB) 4 3 10 20
RR (ms) 0.6 1.4 2 5
FR (ms) 0.6 1.4 2 6
ts (ms) 10 20 60 120
fs/Fs (unit) 0.01 0.035 0.08 0.1
T? (ms?) 6 18 40 100
B2 /Fs (unit) 0.03  0.06 0.1 0.4
VIE (unit) 12 60 100 140
VIF/Fs (unit) 0.008 0.016 0.021 0.04

Fs= Sampling frequency

43



MEAN AND STANDARD DEVIATIONS OF SOME PARAMETERS FOR EMBOLIC
SIGNALS, ARTIFACTS, AND DS

ES Artifact

Mean SD Mean SD Mean SD

SMP 2.45 0.83 5.96 0.77 3.27 0.72
TP2I'R 25.13 3.17 34.57 6.62 18.32 3.13
P2TR 12.1 3.01 14.16 6.67 6.29 1.82
F2RM 25.44 7.01 9.4 11.15  23.18 7.59
F2R8 1.29 7.13 1.79 11.25 -0.58 6.18
RR 3.88 2.53 0.95 0.59 3.52 2.05
FR 4.65 3.15 0.97 0.63 4.00 2.12
TF2R 15.30 6.24 4.05 9.82 14.13 4.03
s 51.59 31.7 146.38 76.8 6.96 4.9
fs 0.114 0.049 0.014 0.007 0.108 0.189
TS2 73.87 43.3 185.08 106.6 10.86 8.6
Bg 0.08 0.038 0.033 0.031 0.492 0438
VIE 101.34 96.1 43.47 63.3 12.3 5.6
VIF 0.016 0.008 0.012 0.021 0.021 0.012
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Detection Results

Data set 1 Data set 2
100 ES 100 ES
98% as embolic signal 95% as ES
1% as artifact 3% as artifact
1% disputed 2% disputed
100 artifacts 100 artifacts
96% detected as artifact 98% as artifact
4% disputed 2% as ES
100 DS 100 DS
93% as DS 95% as DS
6% as ES 1% as artifact
1% disputed 4% disputed

When it was
tested on a
third data set,
198 ES out of
202 were
detected as ES
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Examples - 4

« Smartphone Based Computerized Sperm Analysis

— Sperm Concentration
Analysis

B — Sperm Morphology
Analysis

| — Sperm Motility

i Analysis
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Smartphone Based Data Acquisition Approach

Switch

Video Recording
and Transferring
by Smartphone
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Feature Matching Based Video Stabilization

*Hamza Osman llhan, Nizamettin Aydin, A novel data acquisition and analyzing approach to spermiogram tests,
Biomedical Signal Processing and Control, Volume 41, March 2018, Pages 129-139
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Feature Matching Based Video Stabilization

Table 3.2.1 Total Number of Vibrated Frame Numbers in Sequence

Frame Normospermia (Migospermia Azoospermia

Countings Subjl | Subj2 | Subj3 | Subjd | Subj5 | Subj6 [ Subj7 | Subj8 || Subjl | Subj2 | Subj3 | Subjd || Subjl | Subj2
— Vidl o 24 G 28 280 35 132 188 282 88 M 8 48 | 28
= Vid2 105 a0 8 150 47 457 2 114 157 163 fil) 57 257 o7
= Vid3 39 4 26 {6 364 188 M 87 105 238 84 16 173 | 45
© Minimum 39 4 6 28 47 35 52 87 105 88 M 8 48 28
Vidl 12 it 1 12 92 4 3 18 12 21 3 18 25 0
Lr_-,:e Vid2 150 13 ) 9 0 128 2 18 8 4 7 3 88 0
'ﬁ Vid3 10 T 3 15 16 39 38 12 13 55 11 0 M 0
Minimm 10 bt 0 9 0 4 2 12 a8 4 . 0 25 0

Detected Motile 5)

: a0 I 'ﬂ rr‘;,,lf"

200 400 500 &0 1000 1200 1400 1600
Fram Mumber Frame Mumber



Sperm Concentration Analysis

an pcomimionana ] | Gndand Regonof 1 pemmmmmmmmmnesmmneemans — ¢ e
: Organization 11 Interest Detection 1 : Immotile Sperm Detection 1o Sperm Counting
1 - - 1 1
1 11 1 1 [ Background Morphological Active |
' Ocular Video ] ! B::::g:;ﬁ:d . ","‘[ Extraction ]-’ Operations -'[ Contours ]':_L:> Number of
1. N RS 1] ~ d 1 Spatial Blob Immotile Sperm
| y 1P v V| fzzzzzzzzozzoooozzzozzozzzzzzzzzzzi V| Analysis
: Split i?;g :::;rideos} il | Grid Detection J : ! Motile Sperm Del(iclion _E_|> (Segmentation)
; | 7 : Background ]_’ Morphological ' i
: Makler ImageSets : : [ Segment images 7 : : Bdraction Operations J : :
! (900 Frame) T 1 |into 36 grid windowsJT P L LI L EL L L L
Motile Sperm Concentration Immotile Sperm Concentration
million /ml VA CASA Cs5CS VA CASA CsCS
Avg. +o Avg. +o Avg. +o Avg, o Avg, +o Avg, +o
#1 0 0 : s 0 0 0 0 _ e 0.28 0.13
miy) 025 043 | o Operation — 0325 0s3 | o Operation —e——amy
3 #3 5.25 0.583 5.1 0.17 1.67 0,56 8.25 0.43 ¥ 016 7.53 0.2
; #4 10,25 0.43 10 0.21 ¥ 0.64 11.25  0.43 12.2 .59 09.93 0.63
--; #5 2.25 0.43 L.7 0.24 2.33 0.65 | 23.75 2.59 | 26.6 0,910 23.65 2.65
n #6 21,75 0.83 22.2 0,66 21.38 0.94 11.75 1.3 12.1 0.32 1068 0.58
#7 2005 1.12 21.1 0.85 19.6 0.97 23.5 1.12 23 057 22.65 092
#8 24 0.71 24.4 0.36 23.15  0.56 25.5 0.87 | 26.4 0.51 24.4 0.58

*Hamza Osman llhan, Nizamettin Aydin, Smartphone based sperm counting - an alternative way to the visual
assessment technique in sperm concentration analysis, Multimedia Tools And Applications, (Accepted - In Publication)



Sperm Morphology Analysis

........

e e ! | e !
‘5'0 . 'l ‘s'l
...... ~ | original k-NN image classification (k= 5)
e ¢ Sperm No. of | No. of correct (precision—sensitivity—accuracy), %
. i shapes SpErIns masking, % Original k-means Masked by
possansd”” (raw) segmented our method
e 3_:’ Biob analysie Normal 59 57 (96.6) 96-63-73 71-64-81 79-63-82
P e ohe Tapered 55 1(92.7) | 63-45-67 | 51-46-72 | 52-52-77
"""" ; = 5 Pyriform 58 5 (94.8) 8-25-72 | 17-66-76 | 54-63-80
E .'-'-'-" es2ll Amorphous 59 1 (86.4) 11-48-76 | 78-54-78 43-54-76
;-'-'-‘-'-'-‘"N e Total 231 216 (93.5) —
' - - Ic
R ¥ AR Overall accuracy, % 44.4 53.7 57.4
E E onentatlon calculatlon
"""" Le by substraction of
......... % centre points
‘ % " Iocatetge mask
:I > 5 !: on the image patch
' = ' along the orientation

...........

*Hamza Osman llhan, Gérkem Serbes, Nizamettin Aydin, Automatic directional masking technique for better
sperm morphology segmentation and classification analysis, Electronics Letters, 55.5 (2019): 256-258.



Sperm Morphology Analysis

ROI Segmentation (Sperm / Non-Sperm} Eeature Extraction Technigues _
Conventional Machine Learning Techniques.
Microscope Modified Overlapping Fuzzy C-Means Descriptor Based Spatial Features -
Ocular Image Groups Shrinkage Clustering DT Perfarmance
s | ||
1 Morphology :
Dataset Ensemble Leaming Techniques

A

Wavelet Based Statistical Features
[ e o | M= S =

Spatial Feature Labelling as
Extraction by Blob MNeormal, Abnormal
Analysis

L Pre-Classification

HE00e

and Non-Sperm F- ure

Data Augmentation

Deep Learning
=

*Hamza Osman llhan, Gorkem Serbes, Nizamettin Aydin, A Fully Automated Hybrid Human Sperm Detection and
Classification System based on Mobile-Net and the Performance Comparison with Conventional Methods,
Medical & Biological Engineering & Computing, (Under Review)



Sperm Morphology Analysis

Ocular Image ROI Detection s 3x3 Denthvise C.
Acquisition by [:> by MOGS + ek Sagmerbition ‘ ‘ | x3 Dep 'nse onv|
Smartphone Fuzzy CMeans
2 2 from Original Ocular ‘ [ Batch Normalization |
Images [ RelLU |

@@ g ‘ < ‘ ‘ ' |:i> [1x PointéiiseConvl

| Batch Normalization |

Al

¥ ) ¥
. o ‘ \ [ RelU |
Morphology \_ Block 1
B = Singe E> S.FO'@ Data Augmentation l
(SMIDS) :

/o
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“] _/ Data Set
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Trained
: @ Model !
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g Performance

Evaluation MobileNet

*Hamza Osman llhan, Gorkem Serbes, Nizamettin Aydin, A Fully Automated Hybrid Human Sperm Detection and
Classification System based on Mobile-Net and the Performance Comparison with Conventional Methods,
Medical & Biological Engineering & Computing, (Under Review)
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Sperm Morphology Analysis

o
[rd

o
=)

= B o o]
[= 3 T = <]

[=.a]
=9

Overall Accuracy (%)
[acs] [wa]
= P

-]
=]

=]
[=a

=]
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Classification Methods

*Hamza Osman llhan, Gérkem Serbes, Nizamettin Aydin, A Fully Automated Hybrid Human Sperm Detection and
Classification System based on Mobile-Net and the Performance Comparison with Conventional Methods,
Medical & Biological Engineering & Computing, (Under Review)
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Ocular
Videos

Sperm Motility Analysis

ROI Extraction

Background
Extraction

v

Line Segment
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Region Of
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K-Means Angle
Segmentation

v

Hough Transform

Video Stabilization

Background
Extraction

4

Feature Extraction

Feature Matching

L

Frame Rotating

(SURF) Stabilized
* Makler Videos
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Sperm Motility Analysis
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Extraction

v

Recursive Kalman
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Feature Extraction

v
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Clustering
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Sperm Motility Analysis
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Sperm Motility Analysis




Sperm Motility Analysis

Trajectory Feature Extraction
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- VCL - BCF

ALH - VAP

LIN



Sperm Motility Analysis

Reference Grade D

VCL | VSL | VAP | STR | LIN | WOB | BCF
Cluster 1 (Grade A) | 35.3 | 29.2 | 32.7 | 89.2 | 82.7 | 926 11
Reference Grade A - - >25 - >75 - -
Cluster 2 (Grade B) | 21.8 | 174 | 194 | 89.3 | 79.5 | 88.6 14
Reference Grade B - - <25 - >75 - -
Cluster 3 (Grade C) | 11.8 | 49 85 | 572 | 40.8 | 67.9 17
Reference Grade C - - - - <75 - -
Cluster 4 (Grade D) | 3.1 0.8 1 4 423 | 17.9 | 39.1 35

Figure 11: Motility Feature clustering over a subject a) Grade A Fast progressive, b) Grade B Progressive, ¢) Grade C Non-progressive, d) Grade D Stable
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Example -5

* Music Genre Classification and
Recommendation by Using Machine Learning
Techniques

— Music genre prediction is the one of the topics that
digital music processing Is interested In.

* In this study:

— Acoustic features of music have been extracted by using digital
signal processing techniques.

— Music genre classification and music recommendations have
been made by using machine learning methods.

 without considering user’s music profile or collaborative
filtering.
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» Convolutional Neural Networks were used for genre
classification and music recommendation.

« The features to be extracted from music has determined
as
— Zero Crossing Rate,
— Spectral Centroid,
— Spectral Constrast,
— Spectral Bandwitdth,
— Spectral Rollof,
— Mel-Frequency Cepstral Coefficients (MFCC).
» To compare performance results, all classification and

recommendation algorithms has been applied on the
GTZAN dataset.
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DATASET

« GTZAN dataset Is used due to Its popularity in
music signal processing.

— Dataset firstly proposed by G. Tzanetakis in IEEE
Transactions on Audio and Speech Processing
2002.

 Dataset contains 1000 audio tracks which

Includes 100 tracks for each 10 genres.

— Genres; Blues, ,  Country, ,
Hiphop, , Metal, , Reggae, .

— Each tracks are 30 seconds long, with 22050Hz
sampling frequency and 16-bits.
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FEATURE EXTRACTION

« 7 feature extraction techniques used:

— Zero Crossing Rate, Spectral Centroid, Spectral
Contrast, Spectral Bandwidth, Spectral Rollof,
MFCC, MFCC Derivative.

ZCR
Spectral Centroid

Spectral Bandwidth arithmetic mean

Spectral Contrast arithmetic median
standard deviation

W W W w w

Spectral Rollof
MFCC (13 coeff) 39
MFCC Derivative (13 coeff) 39
TOTAL 93




ZERO CROSSING RATE

 Ratio of sign changes

— Negative to positive, positive to negative
* More changes: High frequency
» Less changes: Low frequency

s
s: signal

T. signal length

Time
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SPECTRAL CENTROID

 Brightness of a sound MR = .
— Amount of high frequency
— Strong distinction

e LLoudness 11111 I |
 Center of weight of the spectrum "

|

ooz

0 &0 50 amn 920 1000 1050 Tm
Frequency

m 7El

J.'lr
Qi frxm e f;: center frequency of that bin
N
D1 e m;: magnitude of bin number i

Centroid,u =



SPECTRAL CONTRAST

» Peaks and valleys in spectrum

— Difference between them: decibel difference
» Strong spectral peaks: harmonic components
 Valleys: noise

1 ax N ) 1 o= N )
Peak; = log {cr. N Z xk,[} Valley, = log{a N Zxk,N—HI}
i=1 =1

Dif ference = Peak; — Valley,

ke sub-band number of the FFT vector &~ N\
{xk’]_,xk’z, ""xk,N} 7

« N: total number in k-th sub-band e
e (@: constant
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SPECTRAL BANDWIDTH

* Frequency range in the frame

« \Weighted average amplitude difference
between frequency magnitude

(Zsmx (f(k}—fcl”)ﬂ

Amplitude (dB)

e S(k) : spectral magnitude at frequency
bin K £

o f(k): frequency at bin k T

e f(c): spectral centroid

e p = 2: weighted standard deviation
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SPECTRAL ROLLOF

» Distinguish between rapid and slow music

— Frequency value at which a magnitude distribution
below a certain percentage value concentrates

iMi [n]=0.85 x i:Mi [r] ‘
=1

;
n=1

n Spectrum /\/\/\/\;\rioﬁ’point»
magnitude
e M:|n|: magnitude of the Fourier ,;_,
i e

transform at frame ¢t and frequency -l

95% spectrum energy 5% spectrum energy
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MEL FREQUENCY CEPSTRUM COEFFICIENTS (MFCC)

» Most popular feature extraction technique
— Purpose: Cepstral coefficients =» Human hearing system
— Cepstral coefficients:

« Normally: Linear scale

 In MFCC:

— Below 1 kHz: Linear scale
— Upper: Logaritmic scale

Sound Signal 4[ Framing & Windowing H FFT J
Mel Cepstrum —[ IFFT H Mel Filter Bank & Iog{]}
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MACHINE LEARNING

« 5 classifier used:
— K-Nearest Neighbor (K-NN),
— Naive Bayes (NB),
— Decision Tree (DT),
— Support Vector Machine (SVM),
— Random Forest (RF).
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DEEP LEARNING

 Convolutional Neural Networks used to
classify items that contain spatial
neighborhood.

* In this study, array of randomly created filters
are used and they are tweaked to better
describe the data.

» Even though, they are used to classify images
but one dimensional filters can be utilized to
classify audio.
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DEEP LEARNING

Repeated
: Conwvolution , Pooling E
E’ : H‘ T
. Layer Activation Layer :
Repaated
= |
! Fully !
Flatten —I’ﬁl" Connected = Activation .
! Layear
| |
Cutput Fully Softmax
Connected =~ L
Activation
Layer

G-
7-

8-

G-

10-

11-

12-

13-

2D Convolution Layer, 55 sized 32 filters,
LeakyRelLU activation function

Max Peooling Layer

2D Convolution Layer, 5x5 sized 32 filters,
LeakyReLU activation function

Max Pooling Layer

2D Convolution Layer, 5x5 sized 32 filters,
LeakyReLU activation functiocn

Max Pooling Layer

2D Convolution Layer, 5x5 sized 32 filters,
LeakyRelU activation function

Average Pooling Layer

Flatten Layer

Dense Layer, 256 nodes, LeakyReLU
activation function
Dense Layer, 128 nodes, LeakyReLU
activation function
Dense Layer, 64 nodes, LeakyReLU

activation function
Dense Layer, 10 nodes, Softmax activation
function, as output layer

72



DEEP LEARNING

 The inputs of network are as follows:

— Raw Audio:
« Directy fed to the network. 1D convolutional layers are

used.
— Short Time Fourier Transform (STFT):

« Applied to audio before feding. This transforms 1D time
series into 2D frequency domain.

— MFCC:

* Mel Frequency Cepstrum is a representation of the
short-term power spectrum of a sound, based on mel
scaled spectrogram. MFC Coefficients make up the

MFC.
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RESULTS

hann
Algorithm
1024 4096
KNN 61.50% 62.99%
RF 61.90% 63.69%
NB 55.30% 56.00%
DT 48.50% 55.30%
SVM 72.60% 72.70%

barthann
1024 4096
61.70% 62.50%
62.80% 65.69%
55.09% 56.20%
50.90% 55.00%
72.30% 72.390%9

Window type:
Hanning(hann) and
Bartlett-Hann(barthann)
Window size: 1024 and
4096

K: 3 for KNN

Kernel:  Linear for
SVM
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Genre

Blues
Classical
Country

Disco
Hip-hop

Jazz

Metal

Pop
Reggae
Rock

RESULTS

First 5
Songs
60%
88%
40%
48%
72%
520
84%
60%
24%

60%

First 10
Songs
48%
90%
50%
40%
60%
42%
76%
50%
26%

50%
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RESULTS

Data . . F-
Accuracy Recall Precision

Tvype ‘ Measure

Raw 15.00 % 19.00% 15.00% 13.00%

Music

STFT 66.00 % 65.00 % 69.00 % 65.00 %

MFCC 63.00 % 63.00 % 64.00 % 62.00 %



RESULTS

Genre

Blues
Classical
Country

Disco
Hip-hop

Jazz
Metal
Pop
Reggae
Rock

First 5
Songs
63.00%
90.80%
56.80%
53.60%
64.20%
65.00%
79.40%
78.40%
57.20%

49.80%

First 10
Songs
49.70%
87.70%
49.40%
45.90%
57.30%
52.70%
75.10%
73.80%
48.90%

42.20%
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RESULTS

SVM achieved better classification results than other
methods.

Changing the window size and window type caused
very small performance changes.

MFCC has better effect than the other methods.

Using deep learning method showed that there Is no
considerable performance change on music genre
classification.

SVM has achieved higher success than the CNN
algorithm.

For some genres of music like Classical, the music
recommendation Is highly successful, while in some
species the performance falls.
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